wisemonkeys logo
FeedNotificationProfileManage Forms
FeedNotificationSearchSign in
wisemonkeys logo

Blogs

Clustering Techniques

profile
Priya Nichit
Aug 23, 2024
0 Likes
1 Discussions
99 Reads

Clustering ek technique hai jo data ko groups mein divide krte hai, jise clusters kehte hain. Ye groups similar items ko ek saath rakhte hain. Matlab, jo data points ek jese hai, unko ek cluster mei daal diya jata hai. Yeh unsupervised learning ka part hota hai, matlab yeh technique bina labeled data ke kaam karti hai.


Structure: Clustering ka structure simple hai. First, data ko analyze karte hain then uske basis pe clusters banate hai. Yeh clusters data ke similarity ya density ke base pe bante hai. Hierarchical clustering mein clusters ko tree-like structure mein arrange karte hai, jise dendrogram kehte hai. Partitioning clustering mein data ko pre-defined clusters mein break kiya jata hai.



Techniques:


K-Means Clustering:

Yeh ek popular partitioning technique hai jisme data points ko predefined "k" clusters mein divide kiya jata hai. Har cluster ka ek centroid hota hai, aur data points ko unke nearest centroid ke according cluster mein assign kiya jata hai. Yeh iterative process hota hai jo tab tak chalta hai jab tak clusters stable na ho jayein.


Steps:

  • Select k number of clusters.
  • Randomly initialize centroids.
  • Har data point ko uske closest centroid ke according assign karein.
  • Recompute centroids based on new cluster memberships.
  • Process ko repeat karein until no changes occur.

·      


 Hierarchical Clustering: 

Yeh technique data ko layers mein divide karti hai, ek tree-like structure banati hai jise dendrogram kehte hain. Do tarike hote hain:

1.    Agglomerative Clustering (Bottom-up): Pehle har data point ko apna ek cluster banaya jata hai, aur phir close clusters ko merge karte jate hain.

2.    Divisive Clustering (Top-down): Sabse pehle ek single cluster banate hain jo poore data ko represent karta hai, phir isse smaller clusters mein divide karte hain.


Steps:

  •   Start with all data points as individual clusters.
  •   Merge the closest clusters.
  •   Repeat until one large cluster is formed.

 


Density-Based Clustering: 

Ismein clusters un regions mein bante hain jahan data points ki density zyada hoti hai. Is technique ka fayda yeh hai ki yeh noise ya outliers ko ignore kar sakti hai, jo large aur scattered data ke liye ideal hota hai.


Steps:

  1. For each data point, check how many neighbors fall within a specific distance (eps).
  2. If enough neighbors are found, it's considered a core point, and a cluster is formed.
  3. Points within the distance are added to the cluster; noise points are left unclustered.


Advantages: Its irregular shapes ke clusters ko handle karne mein kaafi effective hoti hai, unlike K-Means jo spherical clusters ko prefer karta hai.

 


Gaussian Mixture Models (GMM): 

Yeh probabilistic model use karta hai, jisme data ko multiple Gaussian distributions ke mix ke roop mein model kiya jata hai. Har data point ko uss cluster mein assign kiya jata hai jisme uska probability score highest hota hai. Yeh technique tab useful hoti hai jab clusters overlap karte ho ya jab data ko soft clustering (jahan ek data point multiple clusters mein belong kar sakta hai) ke through model karna ho.


Steps:

  • Assume the data follows multiple Gaussian distributions.
  • Calculate the probability of each data point belonging to a particular distribution.
  • Assign the point to the cluster with the highest probability.


 Advantages: Overlapping clusters ko identify karna ho toh GMM zyada effective hota hai, jab K-Means fail hota hai.  



Advantages:

  • Clustering se humein data ke hidden patterns pata chal jata hai.
  • Yeh data ko easily analyze aur visualize karne mein help karta hai.
  • Clustering customer segmentation jaise practical tasks mein kaam aata hai.
  • Yeh large datasets ko simplify karne mein madad karta hai, jisse analysis fast aur accurate hota hai.



Disadvantages:

  • Kahi baar clusters ki exact number decide karna difficult hota hai.
  • K-Means clustering complex data shapes ke liye not much effective.
  • Density Based ko high-dimensional data mein problem hoti hai.
  • Model-based clustering jese GMM mein accurate results ke liye zyada computing power chahiye hoti hai.



Applications:

  • Customer Segmentation: Customers ko unke behavior ke basis pe groups mein divide karte hain, So marketing campaigns ko target kar sakein.
  • Image Segmentation: Images ko parts mein divide karte hain taaki specific objects ya patterns ko identify kar sake.
  • Document Classification: Documents ko topics ke hisaab se classify karte hain.
  • Anomaly Detection: Ajeeb data points ya outliers ko detect karte hain, jo fraud detection mein madad karta hai.


Conclusion: Clustering ek powerful tool hai data analysis ke liye. Yeh alag-alag techniques use karke data ke hidden insights search krne mein madad karta hai. Har technique ka apna ek unique approach hota hai, aur data ki nature ke hisaab se best technique choose karna chahiye. Like K-Means large datasets ke liye acha hai, density base noisy datasets ke liye aur GMM jab data ko distributions mein fit karna ho. Isliye, clustering techniques ko samajhna aur sahi way se apply karna data science mein bohot important hai.


Comments ()


Sign in

Read Next

Data Science in Predictive Analytics: Transforming Business Decision-Making

Blog banner

Unlocking Success: Mastering Google Ads Strategies

Blog banner

BLOCKCHAIN MACHANISM

Blog banner

Deadlock and starvation

Blog banner

Getting started with Android Studio

Blog banner

Cyber Forensics in Healthcare: Protecting Patient Data and Preventing Breaches

Blog banner

Direct Memory Access

Blog banner

BENIFITS OF YOGA

Blog banner

Why You Need 2FA (Two-Factor Authentication) On Your Email And Other Online Accounts

Blog banner

Deadlocks in Operating System

Blog banner

Concurrency and Deadlocks

Blog banner

Save Environment

Blog banner

Modern Operating System - Khush Bagaria

Blog banner

Importance of Network Security Risk

Blog banner

What is a Dumpster Diving Attack?

Blog banner

Street foods

Blog banner

HOW CAN SOCIAL MEDIA MAKE YOU HAPPIER?

Blog banner

Office Lunch Problems in Mumbai and How Tiffin Services Solve Them

Blog banner

Why Mumbai Professionals Are Switching Back to Home-Style Tiffin Meals

Blog banner

Transgender

Blog banner

Honeypot in cyber security

Blog banner

What is Packet Filtering?

Blog banner

Benefits of Yoga

Blog banner

TOP 5 GAMING GADGETS (2024)

Blog banner

STARVATION

Blog banner

Working with Sniffers for monitoring network communication

Blog banner

Memory Management in Operating System

Blog banner

Practical Implementation of Client Server model using TCP/IP.

Blog banner

APACHE KAFKA

Blog banner

Uniprocessor Scheduling

Blog banner

Regression Analysis

Blog banner

What is Anxiety? How to manage Anxiety?

Blog banner

Buffering

Blog banner

The Joy of Giving: How Festivals Teach Children Empathy and Gratitude

Blog banner

All you need to know about Website Traffic

Blog banner

Teamwork

Blog banner

In the world of Technology...

Blog banner

Real-Time Operating Systems (RTOS) Deep Explanation

Blog banner

Goa Trip With Friends

Blog banner

This Windows 11 encryption bug may cause data damage

Blog banner

Quality check in IT services

Blog banner

ARTICLE ON WRIKE CORPORATION

Blog banner