wisemonkeys logo
FeedNotificationProfileManage Forms
FeedNotificationSearchSign in
wisemonkeys logo

Blogs

Understanding Business Layer in Data Science

profile
Sejal Karanjawkar
Aug 24, 2024
0 Likes
0 Discussions
99 Reads

Business Layer in Data Science


1. Introduction:


Business layer data science framework mein pehla aur bahut hi zaroori hissa hota hai. Iska role hai data science techniques aur tools ko business ke objectives ke saath align karna. Basically, yeh layer wo point hai jahan data science ka kaam shuru hota hai, aur iska main focus hota hai ki kaise data ko use karke business objectives ko achieve kiya jaye. Is layer ke through, business ko insights milti hain jo unke decision-making process mein madad karti hain.


2. Understanding Business Requirements::


Business layer mein sabse pehla step hota hai business requirements ko samajhna. Data science team ko ye samajhna bahut zaroori hai ki business ka asli objective kya hai. Kya company ko apni sales badhani hai? Ya phir customer satisfaction improve karna hai? Jab tak team ko clear nahi hoga ki business ko kya chahiye, tab tak wo sahi data aur techniques ka use nahi kar sakti.


3. Data Collection and Processing:


Jab business requirements clear ho jati hain, toh agla step hota hai data collection aur processing ka. Business layer mein wahi data collect kiya jata hai jo business ke liye relevant ho. Fir us data ko clean kiya jata hai, usmein se unnecessary information ko remove kiya jata hai aur analysis ke liye ready kiya jata hai. Data ka ye processing step crucial hota hai kyunki accurate aur clean data se hi accurate results milte hain.


4. Model Development:


Data ko process karne ke baad, data science team models develop karti hai jo business objectives ko fulfill kar sake. Yeh models predictions, recommendations, ya insights generate kar sakte hain jo business ke liye directly useful hote hain. For example, ek model predict kar sakta hai ki kaunsa product next month zyada sell hoga ya phir kis customer segment mein marketing zyada effective hogi.


5. Business Insights:


Models se jo bhi results aate hain, unhe business insights mein convert kiya jata hai. Ye insights business ke decision-making process mein madad karte hain. For example, agar model ne predict kiya ki ek certain product ki demand badhne wali hai, toh business us product ka stock increase kar sakta hai.


6. Implementation:


Insights milne ke baad, unhe business processes mein implement karna hota hai. Business layer ensure karti hai ki data se jo bhi valuable information mili hai, uska use karke business strategies ko improve kiya jaye aur growth achieve kiya jaye.


7. Monitoring and Feedback:


Business layer ka ek aur important aspect hai monitoring aur feedback. Implemented solutions ka impact kya hai, wo check karna hota hai. Agar kuch changes ki zarurat ho, toh uska feedback lena aur uske basis par improvements karna bhi isi layer ka kaam hota hai.


8. Communication:


Communication bhi business layer ka ek major part hai. Data science team ko apne findings aur insights ko business stakeholders ke saath clear aur effective tarike se share karna hota hai. Taki unhe samajh aaye aur wo apne business decisions accordingly le sakein.


9. Ethics and Compliance:


Business layer mein ethics aur compliance ka dhyan rakhna bhi zaroori hai. Data ka use karte waqt privacy rules aur regulations ko follow karna padta hai. Agar yeh aspects neglect kiye gaye toh business ka trust aur reputation dono risk pe aa sakte hain.


10. Conclusion:


In short, business layer data science aur business objectives ke beech ek bridge ka kaam karti hai. Effective business layer ke bina, data science ke efforts business ke liye valuable nahi ban sakte. Is layer ke through hi business growth aur success achieve kiya ja sakta hai


Comments ()


Sign in

Read Next

Travel: Everything Everywhere!

Blog banner

OS Evolution Achievements

Blog banner

semaphores in os

Blog banner

Im Photographer

Blog banner

Networking 101: How to Build Meaningful Connections in College

Blog banner

Memory Management

Blog banner

Linux 94

Blog banner

Building a Simple Doctor Appointment System in Common Lisp

Blog banner

Cyber Security in Data Breaching

Blog banner

Defining youtubr

Blog banner

IT RISK

Blog banner

Multiprocessor and Multicore Organization

Blog banner

SPAM

Blog banner

Not anti-social, but pro-solitude

Blog banner

New Horizon Europe project ‘EvoLand’ sets off to develop new prototype services.

Blog banner

15 Interesting Facts about India

Blog banner

Expressing and Measuring Risk (Risk Management)

Blog banner

Carrot Pickle With Raisins (lagan Nu Achar)

Blog banner

Security Breaches in Stock market trading

Blog banner

Social Engineering Deceptions and Defenses

Blog banner

De-Coding Love

Blog banner

Virtual Memory

Blog banner

How to write a cover letter

Blog banner

Navigation With Indian Constellation(NavIC) by ISRO in Geographic Information Systems

Blog banner

TECHNOLOGY : BOON OR CURSE ?

Blog banner

Virtual Machine

Blog banner

Data carving - using hex editor

Blog banner

Deadlocks in Operating System

Blog banner

How to manage in BEST bus in mumbai specially PEAK Time!

Blog banner

Cache Memory in Operating Systems

Blog banner

Routers

Blog banner

Webmail

Blog banner

Virtual Machine

Blog banner

Vulnerability Assessment (Vulnerability Analysis)

Blog banner

ROLE OF THE COMPUTER FORENSICS TOOLS AND TECHNIQUES

Blog banner

The Peephole

Blog banner

10 Survival Tips that might save your life

Blog banner

Yahoo! mail

Blog banner

Safe Learning Spaces: Why Preschool Environment Matters More Than Ever Today

Blog banner

INTERNET SECURITY

Blog banner

Smartphone Security: Vulnerabilities and Attacks

Blog banner

Payment Card Industry - Data Security Standard PCI-DSS compliance for online banking applications

Blog banner