wisemonkeys logo
FeedNotificationProfileManage Forms
FeedNotificationSearchSign in
wisemonkeys logo

Blogs

Understanding Regression Analysis

profile
isha Dangare
Oct 15, 2024
2 Likes
0 Discussions
166 Reads

Introduction


Regression analysis is a powerful statistical method that helps us understand relationships between variables and make predictions based on data. 


Yeh dependent variable aur ek ya zyada independent variables ke beech ka relationship model karta hai, jo decision-making mein valuable insights de sakta hai.


Regression Analysis :


The main goal of regression analysis is to establish a mathematical relationship. 

Dependent variable woh hota hai jise hum predict ya explain karna chahte hain, jabki independent variable(s) woh factors hain jo dependent variable ko influence karte hain. 

Ek tarah se dekha jaye, regression analysis ek tool hai jo humein data ke patterns samajhne mein madad karta hai.


Regression Analysis types:


Regression analysis ke kai types hain, har ek alag data aur relationships ke liye suited hai.


1.Linear Regression


  • Linear regression is the most straightforward form. It assumes a linear relationship between the dependent variable and independent variable(s). 
  • Simple Linear Regression ek independent variable ka istemal karta hai, jaise ek student ke exam score ko hours studied ke basis par predict karna.
  • Multiple Linear Regression zyada independent variables ko include karta hai, jaise house prices ko square footage, bedrooms, aur age ke basis par predict karna.Is tarah se, hum zyada complex relationships ko bhi samajh sakte hain.


2.Logistic Regression


Logistic regression tab use hota hai jab dependent variable categorical ho, aksar binary.Jaise agar humein predict karna ho ki koi customer product purchase karega ya nahi based on income aur age.Agar model probability 0.8 predict karta hai, iska matlab hai ki customer ke purchase karne ka 80% chance hai.Iska matlab agar humare paas sahi data hai, toh hum acche predictions kar sakte hain.


3.Polynomial Regression


Jab variables ke beech relationship linear nahi hota, tab polynomial regression use hota hai.Jaise agar humein temperature aur ice cream sales ke beech relationship model karna ho, jo linear nahi hai.Yeh un situations mein kaam aata hai jahan linear relationship nahi hota.


4.Ridge Regression


Ridge regression un situations mein use hota hai jahan multicollinearity hoti hai, matlab independent variables highly correlated hote hain.Jaise agar hum student performance ko study time, attendance, aur class participation ke basis par predict karte hain.Yeh humein stable predictions dene mein madad karta hai jab variables correlated hote hain.


5.Lasso Regression


Lasso regression bhi ridge regression ki tarah hai, lekin yeh coefficients ke absolute values par focus karta hai.Jaise house prices ko predict karne ke liye Lasso model kuch coefficients ko zero bana sakta hai.Is tarah se hum model ko simplify kar sakte hain aur sirf zaroori features ko rakh sakte hain.


6.Elastic Net Regression


Elastic Net regression ridge aur lasso regression dono ke strengths ko combine karta hai.Yeh un situations mein useful hai jab multiple features correlated hote hain.Is approach se hum variable selection aur stabilization dono kar sakte hain, jo regression analysis ko versatile banata hai.


7.Stepwise Regression


Stepwise regression ek method hai jahan predictive variables ka selection automatic procedure se hota hai.Forward selection ya backward elimination ke through yeh kiya ja sakta hai.Yeh process humein sabse significant predictors identify karne mein madad karta hai, jo model interpretability ko improve karta hai.


Applications of Regression Analysis


Regression analysis ka istemal kai fields mein hota hai:


Economics: Understanding the relationship between income levels and consumer spending.


Healthcare: Predicting patient outcomes based on treatment variables and demographic factors.


Marketing: Evaluating the impact of advertising on sales and customer engagement.


Finance: Assessing risks and returns based on multiple financial indicators.


Comments ()


Sign in

Read Next

Points to consider if you're planning to visit Florida in 2026

Blog banner

Digital Forensics Challenges and Tools

Blog banner

IoT Evolution

Blog banner

What makes Nugget RC Racing Florida’s Most Exciting Racing Events?

Blog banner

Developments in Modern Operating Systems

Blog banner

Sweet and Sour Mango Pickle (Gol Keri)

Blog banner

Know your Processors!

Blog banner

Modern operating system

Blog banner

Security Threats Faced and Countermeasures adopted by Organizations to avoid them

Blog banner

Virtual memory

Blog banner

Royal enfield

Blog banner

Data Visualization – Importance and tools (Tableau, Power BI)

Blog banner

Clustering Techniques

Blog banner

EVOLUTION OF MICROPROCESSOR

Blog banner

Memory Management

Blog banner

Smart Homes | Zigbee Alliance

Blog banner

AN EVENT-BASED DIGITAL FORENSIC INVESTIGATION

Blog banner

Development Of Modern Operating System

Blog banner

Music is life

Blog banner

FAMILY WHERE LIFE BEGINS....

Blog banner

Multicore and multithreading 171

Blog banner

Theads

Blog banner

Education: Key to your Prosperity

Blog banner

10 Interesting facts you should know!!!

Blog banner

What is Spyware?

Blog banner

Memory hierarchy

Blog banner

Smartsheet

Blog banner

LINUX

Blog banner

Consumer to consumer Business model

Blog banner

Escape

Blog banner

INTERNET

Blog banner

How to Find the Right Therapist For Me?

Blog banner

THE ACTORS LIFE

Blog banner

Raid

Blog banner

The Evolution of the Microprocessor ~ Aditya Pai

Blog banner

Virtual Memory

Blog banner

IO Buffers

Blog banner

Types of Threads

Blog banner

LEMON PICKLE (NIMBU KA ACHAR)

Blog banner

All you need to know about Website Traffic

Blog banner

Can ChatGPT Answer All My Questions About Life?

Blog banner

memory managment

Blog banner